STACKS, COSTACKS AND AXIOMATIC HOMOLOGY

BY YUH-CHING CHEN(1)

Let $p: \mathscr{E} \to \mathfrak{X}$ be a sheaf (espace étalé) of abelian groups. Applying singular functor S one obtains a simplicial map $\pi: E \to X$ with $E = S(\mathscr{E})$, $X = S(\mathfrak{X})$ and $\pi = S(p)$. The fibers $\pi^{-1}(x)$, $x \in X$, form a "local system of groups" over X which will be called a costack of abelian groups over the simplicial set X. In general, a costack is defined as a functor on X, regarded as a category. This is a generalized dual of the notion of a stack defined by Spanier [5].

The main objects of this note are (1) to develop a general theory of stacks and costacks over simplicial sets, (2) to construct a semisimplicial homology theory with "variable" coefficients which is unique in the sense of Eilenberg-Steenrod. The coefficients of the homology are a costack in an abelian category. In particular, when the coefficient costack is a locally constant costack the homology becomes the usual homology with local coefficients.

There are three chapters in this note. Chapter I is devoted to a study of stacks and costacks. It is partially a preparatory chapter. In Chapter II we define homology of costacks via usual chain complexes and prove that the homology so defined can be computed by projective resolutions by introducing a generalized torsion product functor. Under the equivalence of costacks and modules, this generalized functor is essentially the genuine torsion product functor of modules. The rest of Chapter II is a preparation for Chapter III, in which a homology theory of pairs of simplicial sets over a fixed simplicial set K is defined. Results of Chapter II ensure the existence of such a theory. Chapter III concludes with a proof of the uniqueness of this homology theory. This is a generalization of Eilenberg-Steenrod uniqueness theorem [1].

The results presented in this note are a part of the author's Ph.D. thesis at the City University of New York written under the direction of Professor Alex Heller.

CHAPTER I. STACKS AND COSTACKS

1. **Definitions and notations.** $X = \{X_q\}$ is a simplicial set (semisimplicial complex) regarded as a category with objects simplexes x, x', \ldots and morphisms $\mu_x \colon x \to x'$ for incidence map μ such that $\mu(x) = x'$. The morphisms determined by face operators and degeneracy operators are denoted by d_x^i , s_x^i , or simply d, s. A simplicial

Received by the editors May 1, 1967 and, in revised form, March 3, 1969.

⁽¹⁾ Partially supported by the Office of Naval Research, contract Nonr-4884(01) and by NSF Grant No. GP-5041.

map $f: X \to Y$ is thus a functor. If, as in [3], the simplicial set X is defined as a contravariant functor, then the associated category can be viewed as the *graph* of X.

Let \mathscr{A} denote a category which has a projective generator P and satisfies the properties (1) \mathscr{A} is abelian, (2) \mathscr{A} is closed under the formation of products and coproducts (sums), and (3) the product and coproduct of a family of short exact sequences in \mathscr{A} are short exact sequences in \mathscr{A} . E.g.: R-modules \mathscr{M}_R , abelian groups $\mathscr{A}b$, and compact abelian groups $\mathscr{A}b^*$ (the dual of $\mathscr{A}b$) are such categories. Since the category X is small (the class of objects is a set), the functor category \mathscr{A}^X is well defined with morphisms natural maps of functors. \mathscr{A}^X satisfies the three properties of \mathscr{A} listed above.

An object $A \in \mathscr{A}^X$ is a functor $A: X \to \mathscr{A}$ which is called a *precostack* on X with values in \mathscr{A}). If A satisfies the condition that $A(s) = A(s_x^i)$ is an isomorphism for every s^i and x of X, then we say that A is a *costack*. Dually, *prestacks* and *stacks* are contravariant functors on X to \mathscr{A} .

2. The functors $f_{\#}$ and $f^{\#}$. A simplicial map $f: X \to Y$ induces functors $f_{\#}: A^X \to \mathscr{A}^Y$ and $f^{\#}: \mathscr{A}^Y \to \mathscr{A}^X$ as follows: For every A in \mathscr{A}^X , $f_{\#}A = B: Y \to \mathscr{A}$ is the functor defined on objects Y and morphisms μ_Y of Y as

(2.1)
$$By = [Ax, B\mu_y = A(\mu_x),$$

sum over all x such that fx = y and over all μ_x such that $f(\mu_x) = \mu_y$. It is easy to check that $f_\#$ is a well defined functor. The functor $f^\#$ is defined by composition of functors as $f^\#B = Bf$ for B in \mathscr{A}^Y . Both $f_\#$ and $f^\#$ are exact functors and

Proposition 2.1. $f^{\#}$ is the adjoint of $f_{\#}$. i.e. there is a natural isomorphism

$$(2.2) \mathscr{A}^{X}(A, f^{\#}B) \to \mathscr{A}^{Y}(f_{\#}A, B), A \in \mathscr{A}^{X}, B \in \mathscr{A}^{Y}.$$

Proof. Let $\varphi = \{\varphi_x \mid x \in X\}$ be in $\mathscr{A}^X(A, f^\#B)$, i.e. φ is a natural map with $\varphi_x \colon Ax \to (f^\#B)x$. Then, for $y \in Y$ and all $x \in X$ such that fx = y, the universal mapping diagram of $\coprod Ax$

$$Ax \xrightarrow{i_x} \coprod Ax = (f_\# A)_y$$

$$\varphi_x \qquad \qquad \psi_y \qquad \qquad \downarrow$$

$$(f^\# B)x = By$$

shows that the correspondence $\varphi \to \psi$ with $\varphi_x = \psi_y i_x$ defines a natural isomorphism. Since $f_\#$ and $f^\#$ are exact, we have

COROLLARY 2.2. $f_{\#}$ preserves projectives and $f^{\#}$ preserves injectives. For composite simplicial map gf we have $(gf)_{\#} = g_{\#}f_{\#}$ and $(gf)^{\#} = f^{\#}g^{\#}$. 3. Projectives and generators in \mathscr{A}^X . Let Δ^n denote the simplicial analogue of the unit affine *n*-simplex and let δ be its nondegenerate *n*-simplex. For every $x \in X_n$, the correspondence $\delta \to x$ determines uniquely a simplicial map $x^{\delta} \colon \Delta^n \to X$. We shall show that the induced functor $x_{\#}^{\delta} \colon \mathscr{A}^{\Delta} \to \mathscr{A}^X$ (here Δ stands for Δ^n) supplies projectives of \mathscr{A}^X .

THEOREM 3.1. Let P^{Δ} : $\Delta^n \to \mathcal{A}$ be the constant functor with value P (a projective generator of \mathcal{A}), then P^{Δ} is a projective of \mathcal{A}^{Δ} .

Proof. For any $F \in \mathscr{A}^{\Delta}$,

$$\mathscr{A}^{\Delta}(P^{\Delta}, F) \approx \mathscr{A}(P, F\delta).$$

For, let $\varphi = \{ \varphi_{\sigma} \mid \sigma \in \Delta^n \}$ be in $\mathscr{A}^{\Delta}(P^{\Delta}, F)$, then the commutative diagram

$$P \xrightarrow{\varphi_{\delta}} F\delta$$

$$\varphi_{\sigma} \downarrow \qquad \qquad \downarrow F\sigma^{*}$$

$$F\sigma \xrightarrow{1} F(\sigma^{*}\delta),$$

where σ^* is the incidence map of Δ^n determined by σ , shows that φ is completely determined by φ_{δ} and vice versa. Thus the correspondence $\varphi \to \varphi_{\delta}$ gives rise to the isomorphism 3.1. This and a routine computation show that P^{Δ} is projective.

Theorem 3.2. $U = \coprod_{x \in X} (x_{\#}^{\delta} P^{\Delta})$ is a projective generator of \mathscr{A}^{X} .

Proof. U is projective since $x_{\#}^{\delta}$ preserves projective, and coproduct of projectives is a projective. Now, a simple computation shows that

(3.2)
$$\mathscr{A}^{\mathbb{X}}(U,A) \approx \prod \mathscr{A}^{\Delta}(P^{\Delta},Ax^{\delta}) \approx \prod \mathscr{A}(P,Ax).$$

Thus $\mathscr{A}^{\mathsf{x}}(U, A) \neq 0$ for any $A \neq 0$. U is a generator.

We conclude that since \mathscr{A}^x has projective generators, it has enough projectives. Thus one can do homology in \mathscr{A}^x by projective resolutions.

4. Stacks and costacks. A costack (resp. stack) as defined in §1 is a normalized precostack (resp. prestack). Since $A(d_{sx})A(s_x)=A(d_{sx}s_x)=1$ for all $x \in X$, a precostack is normalized if and only if $A(d_{sx})$ is an isomorphism for all d_{sx} . The same holds true for stacks. In the rest of this paper, we shall leave out the dual theory for stacks.

Costacks form an abelian category $\overline{\mathscr{A}}^x$ which is an exact full subcategory of \mathscr{A}^x . It is easily shown that $\overline{\mathscr{A}}^x$ is a Serre subcategory of \mathscr{A}^x in the sense that it is closed under the formation of subobjects, quotient objects and extensions. Also, $\overline{\mathscr{A}}^x$ is closed under the formation of products and coproducts. Thus, by a theorem of Freyd [2], we have

PROPOSITION 4.1. $\overline{\mathscr{A}}^{x}$ is reflective and coreflective.

 $\overline{\mathscr{A}}^X$ is coreflective in the sense that for each $A \in \mathscr{A}^X$, there is $N*A \in \overline{\mathscr{A}}^X$ and a map $r: A \to N*A$ such that for any $\overline{A} \in \overline{\mathscr{A}}^X$ and any map $\varphi: A \to \overline{A}$ there is a unique map $\psi: N*A \to \overline{A}$ with $\psi r = \varphi$. Reflectivity is defined dually.

The coreflector $N^*: \mathscr{A}^X \to \overline{\mathscr{A}}^X$ is the coadjoint of the inclusion functor $J: \overline{\mathscr{A}}^X \to \mathscr{A}^X$ and so preserves colimits. Since J is exact, N^* also preserves projectives. Thus

THEOREM 4.2. Let NX be the set of nondegenerate simplexes of X, then $U^* = N^* \mid_{x \in NX} (x_{\#}^{\delta} P^{\Delta})$ is a projective generator of $\overline{\mathscr{A}}^X$.

The reflection \overline{A} of A is a costack defined as $\overline{A}x = Ax$ for $x \in NX$ and $A(sx) \approx Ax$ for all degeneracy operators s. The reflector N_* is exact and so its coadjoint functor J preserves projectives. Hence, a projective resolution of \overline{A} in $\overline{\mathscr{A}}^x$ is also a projective resolution of \overline{A} in \mathscr{A}^x . Summarizing, we say that $\overline{\mathscr{A}}^x$ is homologically closed in \mathscr{A}^x .

5. Generalized torsion product functor. For each $A \in \mathcal{A}^X$, let CA be the chain complex of objects in \mathcal{A} with n-chains $\coprod_{x \in X_n} Ax$ and differential $\partial = \{\partial_n\}$ defined as

(5.1)
$$\partial_n = \prod_{x \in X_n} \left(\sum_{i=0}^n (-1)^i A(d_x^i) \right).$$

The homology of CA is denoted by H(A).

THEOREM 5.1. On \mathscr{A}^X , H is naturally isomorphic to LH_0 , the left derived functor of H_0 .

Proof. To show that for every projective A of \mathscr{A}^X , $H_n(A) = 0$ for n > 0. Since a projective is a summand of a coproduct of copies of projective generator U, it suffices to show that $H_n(U) = 0$ for n > 0. This is true since $CP^{\Delta} = C(x_{\#}^{\delta}P^{\Delta})$ is acyclic and so is the coproduct $U = \coprod_{x \in X} (x_{\#}^{\delta}P^{\Delta})$.

When X has finitely many nondegenerate simplexes then the category of costacks of abelian groups over X has a small projective generator U and may be identified with the category of right R modules, R is the endomorphism ring of U; H_q then becomes Tor_q^R $(-, H_0U)$.

EXAMPLE. If X is a simplicial complex, then $R \approx \coprod_{\sigma \leq \tau} Z(\sigma, \tau)$, where $\sigma \leq \tau$ means σ is a face of τ , $Z(\sigma, \tau)$ is the infinite cyclic group generated by the symbol (σ, τ) . Observe that the multiplication in R is defined by

(5.2)
$$(\sigma, \rho)(\rho, \tau) = (\sigma, \tau); \qquad (\sigma, \rho)(\rho', \tau) = 0 \quad \text{if } \rho \neq \rho'.$$

CHAPTER II. HOMOLOGY WITH VARIABLE COEFFICIENTS

6. Homology of simplicial pairs. (X, X') is a simplicial pair with inclusion map $i: X' \to X$. The induced functor $i_{\#}: \mathscr{A}^{X'} \to \mathscr{A}^{X}$ maps $A': X' \to \mathscr{A}$ onto $i_{\#}A' = A: X \to \mathscr{A}$ with supports in X'. Precisely, Ax = A'x for $x \in X'$ and Ax = 0 for $x \in X - X'$. $i_{\#}$ is an exact full embedding and $i^{\#}i_{\#}$ is the identity functor of $\mathscr{A}^{X'}$.

Observe that $i_\# i^\# A$ is a subobject of A with supports in X' and $i_\# i^\#$ is an exact reflector. If we identify $\mathscr{A}^{X'}$ with its image under $i_\#$, then

PROPOSITION 6.1. $\mathcal{A}^{X'}$ is (identified as) a reflective Serre subcategory of \mathcal{A}^{X} .

For every $A \in \mathscr{A}^X$, define qA by the exact sequence $0 \to i_\# i^\# A \to A \to qA \to 0$. qA has supports in X - X'. In fact, any object in \mathscr{A}^X with supports in X - X' is the quotient of some A by $i_\# i^\# A$. Such objects of \mathscr{A}^X are called *relative precostacks*. They form a full subcategory $q\mathscr{A}^X$ of \mathscr{A}^X .

PROPOSITION 6.2. $q\mathcal{A}^{x}$ is an exact coreflective Serre subcategory of \mathcal{A}^{x} . The coreflector q is exact.

COROLLARY 6.3. The functors i# and q preserve projective resolutions.

Similar statements are true for normalized categories $\overline{\mathcal{A}}^{X'}$, $\overline{\mathcal{A}}^{X}$ and $q\overline{\mathcal{A}}^{X}$.

Recall that for every $A \in \mathscr{A}^X$ there associates a chain complex CA, the homology of CA is denoted by H(A). For a simplicial pair (X, X'), define its homology with coefficients in $A \in \mathscr{A}^X$ as H(X, X'; A) = H(qA). In particular, H(X; A) = H(A). Observe that if $f: (X, X') \to (Y, Y')$ is a simplicial map, then $C(f_\# A) = CA$ and $C(qf_\# A) = C(qA)$. Hence $H(X, X'; A) = H(Y, Y'; f_\# A)$. On the other hand, f induces a chain map $\{f_n\}: Cf^\# B \to CB, B \in \mathscr{A}^Y$, as follows: For n-chains

$$\coprod_{x} (f^{\#}B)x = \coprod_{x} Bf(x), \qquad x \in X_{n},$$

and $\coprod_{y} By$, $y \in Y_n$, f_n is the unique map rendering the diagram

(6.1)
$$Bf(x) \xrightarrow{i_x} \coprod_x Bf(x) \\ \downarrow f_n \\ \coprod_y By$$

commutative. Thus f induces a map

$$(6.2) f_*: H(X, X'; f^{\#}B) \to H(Y, Y'; B), B \in \mathscr{A}^Y.$$

PROPOSITION 7.4. H is a functor in the sense that simplicial maps

$$f: (X, X') \rightarrow (Y, Y')$$
 and $g: (Y, Y') \rightarrow (K, K')$

give rise to a map

(6.3)
$$(gf)_* = g_*f_* : H(X, X'; f^\#g^\#E) \to H(K, K'; E),$$

where $E \in \mathscr{A}^K$.

7. Exactness, excision, additivity, and dimension. From now on, all coefficients for homology are normalized. It is clear that the functor q, the functors $f^{\#}$ induced

by simplicial maps f, and the functor $i_{\#}$ induced by an inclusion map preserve normalization.

Let A be a coefficient costack, then the exact sequence $0 \to i_{\#}i^{\#}A \to A \to qA \to 0$ gives rise to

PROPOSITION 7.1 (EXACTNESS). To each simplicial pair (X, X') is associated an exact homology sequence

$$\cdots \rightarrow H_o(X'; i^{\#}A) \rightarrow H_o(X; A) \rightarrow H_o(X, X'; A) \rightarrow H_{a-1}(X'; i^{\#}A) \rightarrow \cdots$$

where $i: X' \to X$ is the inclusion map. Moreover, if $f: (Y, Y') \to (X, X')$ is a simplicial map of pairs, then f induces a map f_* of homology sequences of the pairs.

Let (X; X', X'') be a triad with inclusions

$$(X', X' \cap X'') \xrightarrow{i} (X' \cup X'', X'') \xrightarrow{h} (X, X' \cup X'')$$

 $(X'', X' \cap X'') \xrightarrow{j} (X' \cup X'', X'') \xrightarrow{h} (X, X' \cup X'').$

It is easily shown that

Proposition 7.2 (Excision). The excision maps i and j induce isomorphisms

$$i_*: H_*(X', X' \cap X''; i^\#h^\#A) \to H_*(X' \cup X'', X'; h^\#A)$$

$$j_*: H_*(X'', X' \cap X''; j^\#h^\#A) \to H_*(X' \cup X'', X''; h^\#A).$$

The following additivity properties of H are also easy to show.

PROPOSITION 7.3 (ADDITIVITY). Given a simplicial pair (X, X') and a family $\{X_{\alpha}\}$ of simplicial subsets of X with the property that $X = X' \cup (\bigcup X_{\alpha})$ and $X_{\alpha} \cap X_{\beta} \subseteq X'$ if $\alpha \neq \beta$. Let $X'_{\alpha} = X_{\alpha} \cap X'$ and let $h_{\alpha} : (X_{\alpha}, X'_{\alpha}) \to (X, X')$ be the inclusion map, then for any coefficient costack A we have

$$H_*(X, X'; A) \approx \coprod_{\alpha} H_*(X_{\alpha}, X'_{\alpha}; h_{\alpha}^{\#}A).$$

In particular, when X' is void, we have

COROLLARY 7.4. H is infinitely additive.

Now, for each nondegenerate simplex x of X let Δ^x denote the simplicial subset of X determined by faces of x and let $\dot{\Delta}^x$ be its "boundary simplicial subset." If $i_x : \Delta^x \to X$ denotes the inclusion map then for any costack A on X the normalized chain complex of $q(i_x^\# A)$ has zero in all dimensions n except possibly for $n = \dim x$. Thus

PROPOSITION 7.5. $H_n(\Delta^x, \dot{\Delta}^x; i_x^\# A) = 0$ for $n \neq \dim x$.

8. Strong homotopy and deformation. For $n=0, 1, 2, \ldots$, let $I_n=[n, n+1]$, the closed unit interval as simplicial set, and let $W=\bigcup_{n=0}^{\infty} I_n$ be the "simplicial half line."

LEMMA 8.1. For any constant costack E_X on X with value $E \in \mathcal{A}$, the projection $p: (X \times W, X' \times W) \to (X, X')$ defined by $p(x, \sigma) = x$ induces a chain equivalence

(8.1)
$$C(p): C(qp^{\#}E_{x}) \to C(E_{x}).$$

Proof. Let $\otimes: \mathscr{A} \times \mathscr{A}b \to \mathscr{A}$ be the tensor functor defined by Freyd [2, p. 86] and let C(X, X'; Z) be the usual free chain complex of (X, X'). Then $C(E_X) \approx E \otimes C(X, X'; Z)$ and $C(qp^\#E_X) \approx E \otimes C(X \times W, X' \times W; Z)$. It is well known that p induces a chain equivalence of the free chain complexes. This gives rise to the chain equivalence (8.1).

LEMMA 8.2. Let NX_n denote the set of all nondegenerate n-simplexes of X. Then for any coefficients

(8.2)
$$H_*(X^n, X^{n-1}) \approx \prod_{x \in NX_n} H_*(\Delta^x, \dot{\Delta}^x).$$

This follows immediately from Proposition 7.3.

PROPOSITION 8.3 (STRONG HOMOTOPY). $p: X \times W \to X$ induces isomorphism

$$(8.3) p_*: H_X(X \times W; p^{\#}A) \to H_*(X; A)$$

for any coefficient costack A.

Proof. First, we shall show by induction that

$$(8.4) H_{\star}(X^n \times W; p^{\#}A) \approx H_{\star}(X^n; A)$$

for any nonnegative integer n. The crucial point is the fact that $(p^{\#}A)(x, \sigma) = Ap(x, \sigma) = Ax$ for all $\sigma \in W$ and then $H_{*}(\Delta^{x}, \dot{\Delta}^{x})$ and $H_{*}(\Delta^{x} \times W, \dot{\Delta}^{x} \times W)$ have constant coefficients for any fixed $x \in NX$.

For the case n=0, $H_*(X^0 \times W) = \coprod_{x \in X_0} H_*(\Delta^x \times W)$ is isomorphic to

$$\coprod_{x\in X_0} H_*(\Delta^x)$$

since, by Lemma 8.1, each summand $H_*(\Delta^x \times W)$ is isomorphic to $H_*(\Delta^x)$. Hence we have $H_*(X^0 \times W) \approx H_*(X^0)$.

Assume inductively that $H_*(X^r \times W) \approx H_*(X^r)$ for r = 1, 2, ..., n-1, and consider the commutative diagram

$$\cdots \to H_q(X^{n-1} \times W) \to H_q(X^n \times W) \to H_q(X^n \times W, X^{n-1} \times W) \to H_{q-1}(X^{n-1} \times W) \to \cdots$$

$$\downarrow 2 \qquad \qquad \downarrow 3 \qquad \qquad \downarrow 4 \qquad \qquad \downarrow 5$$

$$\cdots \to H_o(X^{n-1}) \longrightarrow H_o(X^n) \longrightarrow H_o(X^n, X^{n-1}) \longrightarrow H_{q-1}(X^{n-1}) \longrightarrow \cdots$$

where the maps 2 and 5 are isomorphisms. Since

$$H_{*}(X^{n} \times W, X^{n-1} \times W) \approx \prod_{x \in NX_{n}} H_{*}(\Delta^{x} \times W, \dot{\Delta}^{x} \times W)$$

and $H_*(X^n, X^{n-1}) \approx \coprod_{x \in X_n} H_*(\Delta^x, \dot{\Delta}^x)$ by Lemma 8.2, it follows from Lemma 8.1 that the map 4 is an isomorphism. Hence, by the five lemma, the map 3 is an isomorphism. This proves (8.4) and, of course, the case when X is finite dimensional.

Now, suppose that X is infinite dimensional with $X^0 \subset X^1 \subset X^2 \subset \cdots \subset X$. Clearly, $H_q(X^n) = H_q(X^{n-1}) = \cdots = H_q(X)$ for n > q + 1. This and (8.4) prove (8.3).

COROLLARY 8.4 (HOMOTOPY). Let $p: X \times I \to X$ be the simplicial map defined by $p(x, \sigma) = x$ for $x \in X$ and any $\sigma \in I$, then for any $A \in \overline{\mathscr{A}}^X$, $p_*: H_*(X \times I; p^{\#}A) \to H_*(X; A)$ is an isomorphism.

For, we have retractions $X \times W \xrightarrow{r'} X \times I \xrightarrow{r} X \times [0]$ such that $r_*r'_* = (rr')_*$ is an isomorphism.

PROPOSITION 8.5 (DEFORMATION). The projection $p: \bigcup_n X^n \times I_n \to X$ defined by $p(x, \sigma) = x$, where $(x, \sigma) \in X^n \times I_n$, n = 0, 1, 2, ..., induces isomorphism

(8.5)
$$p_*: H_*(L; p^{\#}A) \to H_*(X; A), \qquad L = \bigcup_n X^n \times I_n.$$

Proof. Let $L^n = \bigcup_{r=0}^n X^r \times I_r$ and let $LX^n = L^n \cup (X^n \times [n+1, \infty))$, then $L^n \subset LX^n \subset L$. Since LX^n is a deformation retract of $X^n \times W$, $H_q(LX^n) \approx H_q(X^n \times W)$. Hence, by Proposition 8.3, $H_q(LX^n) \approx H_q(X^n) \approx H_q(X)$ for n > q+1. Thus for any $q \ge 0$, there is n > q+1 such that

$$H_a(X) \approx H_a(LX^n) \approx H_a(LX^{n+1}) \approx \cdots \approx H_a(L)$$
.

The proof is complete.

Chapter III. Homology Theory on \mathscr{C}'_{K}

9. K-pairs and axioms for homology. Let K be a fixed simplicial set. A K-pair is a simplicial pair (X, X') together with a simplicial map $\varphi \colon X \to K$. Such a K-pair is denoted by $(X, X')_{\varphi}$. $(K, K')_1$ is written (K, K') and $(X, \phi)_{\varphi}$ is written X_{φ} . When $\varphi = \sigma^{\delta} \colon \Delta^{q} \to K$, the subscript σ^{δ} is abbreviated by σ .

Given two K-pairs $(X, X')_{\varphi}$ and $(Y, Y')_{\psi}$, a K-map $f: (X, X')_{\varphi} \to (Y, Y')_{\psi}$ is, by definition, a simplicial map $f: (X, X') \to (Y, Y')$ such that $\varphi = \psi f$. In particular, an inclusion map $i: (Y, Y') \to (X, X')$ is a K-map $i: (Y, Y')_{\varphi i} \to (X, X')_{\varphi}$ for any simplicial map $\varphi: X \to K$. $(Y, Y')_{\varphi i}$ is called a K-subpair of $(X, X')_{\varphi}$. We shall omit the inclusion map in the notation of a K-subpair. E.g.: write $(Y, Y')_{\varphi}$ for $(Y, Y')_{\varphi i}$, $(X', X')_{\varphi}$ for $(X', X')_{\varphi}$ for $(X', X')_{\varphi}$, etc.

K-pairs form a category, denoted by \mathscr{C}_K , with morphisms K-maps. Any K-pair of the form (K, K') is a terminal object (right zero object).

A homology theory on \mathscr{C}_K' with values in the category \mathscr{A} is a sequence of functors $H_*: \mathscr{C}_K' \to \mathscr{A}$ together with a family of natural transformations $\partial_q: H_q(X, X')_{\sigma} \to H_{q-1}X_{\sigma}, q>0$, satisfying the following axioms:

Axiom 1 (Exactness axiom). For each $(X, X')_{\varphi}$ with inclusion maps $X'_{\varphi} \xrightarrow{i} (X, X')_{\varphi}$ there is an exact triangle of $(X, X')_{\varphi}$,

$$(9.1) H_*H'_{\varphi} \xrightarrow{i_*} H_*H_{\varphi}$$

$$\downarrow j_*$$

$$H_*(X, X')_{\varphi},$$

where $i_* = H_*i$, $j_* = H_*j$.

Let $j_0, j_1: (X, X') \to (X \times I, X' \times I)$ and $p: (X \times I, X' \times I) \to (X, X')$ be simplicial maps defined by $j_0x = (x, 0), j_1x = (x, 1),$ and $p(x, \sigma) = x$, respectively, where $x \in X$, $\sigma \in I$. Then for any simplicial map $\varphi: X \to K$, j_0, j_1 , and p are K-maps as shown in the commutative diagram

Two K-maps $f, g: (X, X')_{\varphi} \to (Y, Y')_{\psi}$ are K-homotopic if there is a K-map $h: (X \times I, X' \times I)_{\varphi_p} \to (Y, Y')_{\psi}$, called a K-homotopy of f and g, such that $f = hj_0$, $g = hj_1$.

Axiom 2 (Homotopy axiom). p_* induced by the K-projection $p: (X \times I, X' \times I)_{\sigma p} \to (X, X')_{\sigma}$ is an isomorphism, or equivalently, if f and g are K-homotopic then $f_* = g_*$.

Axiom 3 (Excision axiom). The excision maps i and j of §7 regarded as K-maps induce isomorphisms i_* and j_* .

For the dimension axiom we need the following argument: In analogy to ordinary simplicial homology theory, let C^{q-1} be the closed star of a vertex in $\dot{\Delta}^q$ [1, p. 78], then $(\Delta^q; \Delta^{q-1}, C^{q-1})_\sigma$ is a proper triad with respect to H_* . This and the exactness axiom give rise to the diagram

$$(9.3) H_{q}(\Delta^{q}, \dot{\Delta}^{q})_{\sigma} \xrightarrow{\partial} H_{q-1}(\dot{\Delta}^{q})_{\sigma} \xrightarrow{h_{*}} H_{q-1}(\dot{\Delta}^{q}, C^{q-1})_{\sigma}$$

$$\downarrow j_{*}^{-1}$$

$$\downarrow H_{q-1}(\Delta^{q-1}, \dot{\Delta}^{q-1})_{d\sigma},$$

where $d\sigma = \tau$ is the *i*th face of $\sigma \in k$, h is an inclusion map, j is an excision map, and $F^i = j_*^{-1} h_* \partial$.

Axiom 4 (Dimension axiom). For any $x \in NX_q$ with $\varphi x = \sigma$, x_*^{δ} : $H_q(\Delta^q, \dot{\Delta}^q)_{\sigma} \to H_q(\Delta^x, \dot{\Delta}^x)$ is an isomorphism and $H_n(\Delta^q, \dot{\Delta}^q)_{\sigma} = 0$ for $n \neq q$. If $\sigma = s^i \tau$, then F^i defined by (9.3) is an isomorphism.

Axiom 5 (Additivity axiom). Let $(X_{\alpha}, X'_{\alpha})_{\varphi}$ be K-subpairs of $(X, X')_{\varphi}$ defined as in Proposition 7.3, then

$$H_{*}(X, X')_{\varphi} \approx \prod_{\alpha} H_{*}(X_{\alpha}, X'_{\alpha})_{\varphi}.$$

Axiom 6 (Deformation axiom). $p_* = H_*(p)$, where p is the K-map $p: L_{\sigma p} \to X_{\sigma}$ defined as in Proposition 8.5, is an isomorphism.

REMARK. These axioms are of course modelled on those of Eilenberg-Steenrod [1] supplemented by Milnor's additivity axiom [4]. If $\mathscr A$ satisfies AB5 (exactness of directed colimits) they could be somewhat abbreviated by supposing that directed colimits were preserved. We must avoid this supposition if we are to have a selfdual theory: it is false even for group-valued cohomology, i.e. homology with values in $\mathscr{A}b^*$.

10. Existence theorem, coefficient costacks. Let A be a costack on K with values in \mathscr{A} . For each $(X, X')_{\sigma} \in \mathscr{C}'_{K}$, let

(10.1)
$$H_{*}((X, X')_{\varphi}; A) = H_{*}(X, X'; \varphi^{\#}A),$$

the right-hand side is the homology of the simplicial pair (X, X') with coefficients in $\varphi^{\#}A$ as defined in the previous chapter.

If $f: (X, X')_{\sigma} \to (Y, Y')_{\psi}$ is a K-map, then $\psi f = \varphi$ and so $f \# \psi \# = \varphi \#$. We then have $H_*((X, X')_{\sigma}; A) = H_*(X, X'; f \# \psi \# A)$. The map $f_*: H_*(X, X'; f \# \psi \# A) \to H_*(Y, Y'; \psi \# A)$ is the induced map $H_*f: H_*((X, X')_{\sigma}; A) \to H_*((Y, Y')_{\psi}; A)$. The results of Chapter II show that

THEOREM 10.1 (EXISTENCE THEOREM). For every costack A on K there is a homology theory H_* on \mathscr{C}_K' defined by the chain homology functor as

$$H_{\star}((X, X')_{\alpha}; A) = H_{\star}(q\varphi^{\#}A).$$

Now, let H_* be any homology theory on \mathscr{C}_K . The coefficient costack A of H_* is, by definition, the costack on K with $A\sigma = H_q(\Delta^q, \dot{\Delta}^q)_\sigma$ for $\sigma \in K$ and with $A(d^i) = F^i$, $A(s^i) = (F^i)^{-1}$. We observe that the coefficient costack of the homology theory H_* in the theorem is just that A.

If K is a point, a K-pair is just a pair of simplicial sets and the theory H_* in the theorem is the ordinary simplicial homology with local coefficients.

11. Uniqueness theorem. We shall show that the H_* in Theorem 10.1 is essentially the only homology theory on \mathscr{C}'_K .

THEOREM 11.1 (UNIQUENESS THEOREM). Let h_* be any homology theory on \mathscr{C}_K . There is a natural isomorphism

(11.1)
$$h_*(X, X')_{\sigma} \approx H_*((X, X')_{\sigma}; A),$$

where A is the coefficient costack of the theory h_* .

Proof. First we show (11.1) for finite dimensional case. Let $\phi = X^{-1} \subset X^1 \subset X^2 \subset \cdots \subset X^r = X_{\varphi}$ (the subscripts φ in X_{φ}^n are omitted) be the increasing filtration of X_{φ} by skeletons. It is an easy consequence of the dimension axiom that the associated spectral sequence collapses and that $h_*(X_{\varphi})$ is naturally isomorphic to the homology of the chain complex C^h with

$$C_q^h = H_q(X^q, X^{q-1}) \approx \coprod_x H_q(\Delta^x, \dot{\Delta}^x), \qquad x \in NX_q.$$

It follows from the dimension axiom and the definition of A that

$$C_q^h pprox \coprod_x H_q(\Delta^q, \dot{\Delta}^q)_{\varphi_X} = \coprod_x A\varphi(x), \qquad x \in NX_q.$$

Thus $C_q^h \approx \coprod_x (\varphi^\# A)x = C_q(\varphi^\# A)$. From the constructions of A and C^h we observe that $C^h \approx C(\varphi^\# A)$ as chain complexes. Hence $h_*(X_{\varphi}) \approx H_*(X_{\varphi}; A)$. Therefore (11.1) follows from the exactness axiom and the five lemma.

Next, suppose that X is infinite dimensional. We have seen that it suffices to prove the isomorphism for the absolute case. From the first part of this proof, we see that for a fixed integer $q \ge 0$ and any integer n > q there is a canonical isomorphism $h_q(X^n) \approx H_q(X^n; A)$. But

$$(11.2) H_o(X_{\sigma}^n; A) \approx H_o(X^{n+1}; A) \approx \cdots \approx H_o(X_{\sigma}; A),$$

we have a direct system

(11.3)
$$h_q(X^0) \xrightarrow{i_*^0} h_q(X^1) \xrightarrow{i_*^1} h_q(X^2) \xrightarrow{i_*^2} \cdots$$

with isomorphisms i_*^n for n > q + 1.

Now, use Axioms 1, 2, 3, 5, and 6 and proceed as in [4], we get a Mayer-Vietoris sequence

$$\coprod_{n=0}^{\infty} h_{*}(X^{n}) \xrightarrow{f} \coprod_{n=0}^{\infty} h_{*}(X_{\varphi}^{n})$$

$$h_{*}(X_{\varphi})$$

with Coker $f_q = \lim h_q(X^n)$. Dual to the Lemma 2 of [4], denote the kernel of f_q by $\mathcal{L}'\{h_{q-1}(X^n)\}$ and call \mathcal{L}' the derived functor of \lim , then there is an exact sequence

$$0 \to \lim h_q(X^n) \to h_q(X) \to \mathcal{L}'\{h_{q-1}(X^n)\} \to 0$$

and a similar one for H_* . Apply (11.2) and (11.3), we have $\mathcal{L}'\{h_{q-1}(X^n)\}=0$ and $h_q(X_{\varphi}) \approx H_q(X_{\varphi}; A)$.

REFERENCES

- 1. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.
- 2. P. Freyd, Abelian categories. An introduction to the theory of functors, Harper and Row, New York, 1964.
 - 3. S. MacLane, Homology, Academic Press, New York, 1963.
 - 4. J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341.
 - 5. E. Spanier, Higher order operations, Trans. Amer. Math. Soc. 109 (1963), 509-539.

Wesleyan University,
Middletown, Connecticut